方阵问题在公务员考试行测科目当中是一个比较重要和特殊的题型,我们可以把方阵问题当作是几何中的正方形来理解,长和宽相等。方阵分为实心方阵(中心区域没有空缺)和空心方阵(中心区域有空缺)两种。数学运算中方阵问题主要围绕方阵的层数、每层人数、总人数展开。在实心方阵和空心方阵中,大家必须熟练掌握一些很重要的结论,解题才能游刃有余。
1、在实心方阵中:
方阵总人数=最外层每边人数的平方
方阵每层总人数=每层每边人数×4-4
从外到内,每层每边人数依次减少2,每层总人数依次减少8(等差数列)
2、在空心方阵中:
方阵总人数,利用等差数列求和公式求解(首项=最外层人数,公差=-8)
方阵每层总人数=每层每边人数×4-4
从外到内,每层每边人数依次减少2,每层总人数依次减少8(等差数列)
【例题】高中生参加体操表演,先排成每边16人的实心方阵,后来又变成一个四层的空心方阵,这个方阵最外层每边有多少人?
A、20 B、21 C、22 D、24
【解析】答案选A。变化前为实心方阵,总人数为16×16=256.变换后为四层的空心方阵,总人数利用等差数列求和公式求解。设最外层总人数为x,则第二层人数为x-8,第三层人数为x-16,第四层人数为x-24,x+ (x-8)+(x-16)+(x-24)=256,解得x=76,那么最外层的边即为(76+4)/4=20,故选择A。
实心方阵和空心方阵中,求解每层总人数、每边减少的数量、每层减少的数量规律都是一致的,所以各位考生只需要区别开求解方阵总人数的方法。
|